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Abstract 

 
The purpose of this research was to assess the ability for DoD software development 

to keep up with the increasing rate of technological change, then propose avenues for 

improvement.  Specifically, this research attempts to answer fundamental questions based 

on the concerns for the 2010 Quadrennial Defense Review.  In general, how do we adapt 

software acquisitions strategy to cope with the increasing rate of technological change? 

The following conclusions were reached:  (a) software projects must be scoped 

and scheduled for development cycles on the order of months, not years, and use open 

architecture, Agile Development methods, and scalable designs with modular code; 

(b) budgets must be stabilized for long-term integrity, with a software development 

working capital fund reserved for JUONS-like urgent IT needs; (c) increased use of 

MAJCOM- or AOC-level business centers must be encouraged and funded to produce 

tailored software modules that interface with larger agile programs built to accept these 

modules; (d) we must take advantage of ATCD and ATD efforts from research 

laboratories, giving MAJCOM and AOC business centers budget authority to “pull” a 

limited amount of ATDs, ACTDs, and JACTDs from the labs, through the appropriate 

System Program Office, to produce and field operational software (by default, not by 

exception); and (e) periodic software development working groups and conferences 

should be continued, but with emphasis on standardization and sharing of lessons learned 

between services, MAJCOMs, and AOCs. 
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THE CYBERSPACE DEVELOPMENT DOGFIGHT:  TIGHTENING THE 

ACQUISITIONS TURN CIRCLE 

I.   Introduction 

 
“DoD has been able to develop and acquire the best weapons and support 

systems in the world. DoD and contractor personnel accomplished this 

feat not because of the system, but in spite of it. And they did so at a 

price… the nation can no longer afford to pay.” 

 — Former Secretary of Defense William J. Perry 

 

Background 

 
Moore’s Law describes the miniaturization trend for doubling the density of 

microchip transistor components approximately every 24 months.  This basic tenet of 

Moore’s Law is often generalized to describe the increasing pace of technology change.  

Technology has, is, and will continue to double on the order of months, not years.  In 

contrast, Rock’s Law is often conversely associated with Moore’s Law in that the cost of 

producing the future’s increased density and technology also increases exponentially.  

Thus the ages-old balancing act between resources and capability is set in motion.  See 

Appendix A:  Fundamental Concepts, for further discussion on these areas. 

Given limited resources and a finite economy, equilibrium is reached at some 

point and Rock’s Law dominates the otherwise exponential growth of Moore’s Law.   I 

believe, however, that we are more limited by how we are using our resources, not just 

the amount of our resources.  We are also limited by a dwindling understanding of how 

our people fit into the process; after all, a process doesn’t run itself!  Regardless, the rate 

of technology change is only getting faster and resources aren’t getting more generous… 

yet our mechanism for spending money, allocating resources, and adapting to changing 

technology requirements is either unchanged or taking even longer to complete for each 
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development cycle.  The development cycle can be described using the Observe, Orient, 

Decide, Act (OODA) model.  Colonel John R. Boyd, considered to be the father of the 

‘OODA loop’ for process analysis, would be the first to say that we should not 

simplistically limit our focus only to the ‘OODA’ parts of the process.   “People, ideas, 

hardware  —  in that order”, he would often preach, and “machines don’t fight wars, 

people do, and they use their minds”, were commonly heard from Colonel Boyd [1].   

As the relative length of time required to complete any project increases, we must 

attempt to predict future capability requirements earlier and earlier.  Thus, the precision 

and accuracy of these requirements fall off rapidly the more we try to peer into the crystal 

ball and see the future.  I sense that the theoretical value and efficiency attained by our 

current acquisitions process is often a false one when all the costs are all tallied.  These 

costs are due to the lack of timely technological adaptations, increasingly unstable 

process transitions, and outright regression in providing timely, unique high-priority 

capabilities required by operators while instead preserving the lower priority integrated 

and over-centralized capabilities desired by managers.  It is important to note that this is 

not necessarily the fault of the acquisition process itself.  The process fulfills valid and 

important ambitions; nonetheless its current manifestation is inadequate and incomplete 

for addressing particularly urgent or unique capability requirements. 

 

Motivation 

 
This research supports the Quadrennial Defense Review (QDR) request for an 

acquisition strategy in an accelerating world.  Based on the QDR 2010 topics, I posed the 

following questions:  How do we change our acquisition strategy to keep pace with our 
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peers?  How do we bridge the gap between specific mission-focused systems, whose 

requirements are well-defined and scoped, and large-scale enterprise systems, which tend 

to be one-size fits all, yet often don’t scale well?  What are technology-centric 

organizations in the business sector doing to remain relevant?  How do they remain agile 

and responsive, while minimizing risk? 

 

Purpose 

 
The purpose of this research project is to evaluate our current acquisition 

capabilities for software development then present methods for mitigating challenges and 

improving our strategy.  To do this, this study will look at the history of acquisition 

reform in the broad sense, before focusing on software development process 

improvements.  It is my feeling that software development is the metaphorical ‘canary in 

the coal mine’ in terms of highlighting acquisitions process breakdowns; software 

development can often be the first to suffer from any weaknesses or mismanagement.  

This study will look at changes we can make to improve software development, 

researching pros and cons of a smaller, faster acquisitions cycle by using medium-sized 

business centers, as opposed to only using large enterprise architecture development 

efforts.  Better methods for transition and integration of Advanced Concept Technology 

Demonstrations (ACTD), Joint ACTDs (JACTD), and Advanced Technology 

Demonstrations (ATD) into the Joint Capabilities Integration & Development System 

(JCIDS) process will also be explored. 
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Scope 

 
This study is limited to a review of existing software development strategies, 

including an overview of relevant theories as needed, and an exploration of new 

approaches for improving software development speed and quality.  I am writing this 

with both operations and acquisitions readers in mind, so I’ve made the attempt to 

minimize the use of acronyms or jargon, while introducing a modicum of key terms 

everyone should know.  An in-depth examination of the various strategies, engineering 

studies, and cost-benefit analyses are also beyond the scope of this study. 

 

Results 

 
The following conclusions were reached:  (a) software projects must be scoped 

and scheduled for development cycles on the order of months, not years, and use open 

architecture, Agile Development methods, and scalable designs with modular code; 

(b) budgets must be stabilized for long-term integrity, with a software development 

working capital fund reserved for JUONS-like urgent IT needs; (c) increased use of 

MAJCOM- or AOC-level business centers must be encouraged and funded to produce 

tailored software modules that interface with larger agile programs built to accept these 

modules; (d) we must take advantage of ATCD and ATD efforts from research 

laboratories, giving MAJCOM and AOC business centers budget authority to “pull” a 

limited amount of ATDs, ACTDs, and JACTDs from the labs, through the appropriate 

System Program Office, to produce and field operational software (by default, not by 

exception); and (e) periodic software development working groups and conferences 
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should be continued, but with emphasis on standardization and sharing of lessons learned 

between services, MAJCOMs, and AOCs. 

 

Thesis Organization 

 
This chapter presents the motivation, purpose, scope and results for this research, 

and concludes with the document’s organization. Chapter II explores the history of 

acquisition reform, including lessons learned from selected acquisition projects and 

existing studies.  Chapter III aggregates and discusses methods for improved software 

development — including pros and cons of each concept.  Chapter IV presents the 

conclusions and ideas for future research. 
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II.  Paralysis by Analysis:  Getting to know thyself 

 

”If you know the enemy and know yourself, you need not fear the result of 

a hundred battles.  If you know yourself but not the enemy, for every 

victory gained you will also suffer a defeat.  If you know neither the enemy 

nor yourself, you will succumb in every battle.” 

—Sun Tzu 

 

A Typical Technology Purchase for an Average Consumer 

 
Nearly everyone reading this is probably familiar with the basic challenges of 

software acquisition.  Even the most tepid computer user has likely experienced the 

dreaded software upgrade, purchased a software program that did not do what we wanted, 

or used software that was unreliable and untrustworthy.  I submit that software 

development and acquisition within the DoD is not altogether different from the typical 

experience of the average person, only the scope and scale of the software is much larger. 

We have probably purchased a technology item, such as software, a computer, 

television, or stereo.  In doing this, we’ve gone through the classic struggle of trying to 

decide which features were needed compared to which features were merely wanted.  We 

considered whether or not to buy the economy model with fewer features and perhaps 

lesser quality, or maybe decided to go for the top of the line, hoping the technology 

features and quality will mean it will last several years.  Once our choice was made, 

we’ve perhaps been disappointed when we discovered that a newer model is already 

under development, and the model purchased will no longer be the leading edge of the 

technology wave.  If we were already aware of this and made a conscious decision as to 

which ‘wave’ to try for — the sharp, ‘bleeding’ edge, expensive first wave, the economy 

of last year’s wave, or the ‘bargain basement’ wave of technology at risk of becoming 
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obsolete.  Ultimately, we must make a decision sometime, or the waves of technology 

pass will us by.  This experience is paralysis by analysis. 

 

History of Acquisition Reform and Software Development 

 
“What would you do if you were stuck in one place and every day was 

exactly the same, and nothing that you did mattered?” 

 —character Phil Connors from the film “Groundhog Day” 

 
 The DoD also experiences a similar paralysis and the United States has made 

many efforts to improve defense acquisitions such that we prevent the waste of valuable 

resources, while providing timely and superior equipment to our fighting forces.  Table 1 

shows a brief history of recent US acquisition reform efforts, prior to the current JCIDS 

process.  It is important to understand that there have been many reform efforts, by many 

intelligent people, and these reforms have made positive changes, but there’s still room 

for improvements, in order to speed up software acquisitions: 

Table 1 - Acquisition Reform Initiatives [2] 

1961 McNamara Initiative 

1970 Fitzhugh Commission 

1972 Commission on Government Procurement 

1976 OMB Circular 4-109 

1978 Defense Science Board Acquisition Cycle Study 

1979 Defense Resources Management Study 

1981 Defense Acquisition Improvement Program 

1983 Grace Commission 

1986 Packard Commission 

1986 Goldwater Nichols 

1989 Defense Management Review 

1990 Quadrennial Defense Reviews 
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The Good 

In one of many Rand Corporation studies of DoD Acquisition Reform (AR) 

efforts, Dr. Ken Oscar, Acting Assistant Secretary of the Army for Acquisition, Logistics, 

and Technology,  described the positive aspect of AR that laid the foundation for JCIDS 

in an article titled “Reexamining Military Acquisition Reform: Are We There Yet?”: 

Overall, Oscar characterized the AR movement in the 1990s as having 

been energized by Secretary Perry’s “Mandate for Change” speech in 

1994, and as having achieved three very important legislative 

accomplishments over the period: the Defense Acquisition Workforce 

Improvement Act (DAWIA) of 1990, the Federal Acquisition Streamlining 

Act of 1994, and the Federal Acquisition Reform Act (FARA) of 1996. In 

his view, those legislative actions (along with the AR efforts to internally 

reform the acquisition process — e.g., the rewrite of the 5000 Series2) 

have helped to improve the education and skills of the acquisition 

workforce, remove unnecessary laws, and reduce regulations — thereby 

contributing to an environment that allows for more creative approaches 

to acquisition than were previously possible.[3] 

 

The reforms of the 1990’s reduced the “stovepipe” effect where organizations tended to 

limit communication vertically up and down the chain of command.  Lateral 

collaboration did not happen naturally.  Dr. Oscar also highlighted the birth of 

“evolutionary acquisition”, which divided large systems into smaller chunks — 

increasing delivery flexibility and decreasing scheduling risk [3]. 

The Bad 

 While these reforms reduced confusion and “red tape”, paving the way for 

Program Managers (PM) to have more creative control over the acquisition process, there 

was still more to be done.  “AR gives PMs authority to take risks but not the resources…” 

and “We reformed the acquisition process but not the financial process that supports it...” 

were among the complaints fielded from PMs.  More so, I’ve often felt that many of the 
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changes were more “lip service” than anything else.  The RAND study’s findings echoed 

these sentiments: 

Several of the participants provided frank assessments of the changes — 

or lack thereof — brought about under AR. A senior deputy PEO 

commented that “AR has been good at cranking out policies, but hasn’t 

made anything faster, better, or cheaper,” a remark with which many 

others participating in the group interview concurred. One participant 

noted, “There is no such thing as acquisition reform. We’ve changed the 

way PMs deal with contractors, but nothing else has changed.” [3] 

 
In another key finding, there was a general observation that not all organizations 

were playing along with AR efforts.  It was widely felt that external organization 

resistance can still dominate AR: 

AR will remain suboptimized until they reform the financial, logistics, test, 

engineering, contracting, and legal communities. These communities can 

unilaterally kill any AR program, since they have full veto authority in 

most cases, while not being held accountable for their decisions. [3] 

 
In criticism of the testing portions of AR, several PMs felt this same refusal to change: 
 

The testing community is still in the old ways of doing business . . . The 

test community is still living 30 years in the past. . . . The test community is 

still focused on their reporting requirements rather than testing to fix. [3] 

 
These observations all seem to involve the concepts of authority, responsibility, 

and accountability.  In my opinion, these three things must be distributed with equal 

measure within an organization.  Whenever one organization is responsible for 

performing tasks, but is not authorized to control its resources, there is a breakdown in 

the overall system of accountability.  Quite often this lack of authority is felt in terms of 

funding control:  “Many PMs felt constrained due to ‘color-of-money’ restrictions on 

how they could spend the moneys within their budgets.” [3]  It seems that it is not just the 

lack of money or resources, but often the control over the same that is inadequate. 
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JCIDS to the rescue 

Acquisition reforms have led to the current JCIDS process, and we’ve evolved 

JCIDS as a capabilities-based method for deciding what to buy and what features we 

need and want — feeding the overall acquisitions process.  Quite literally, the needs are 

called threshold requirements and the wants are called objective requirements. 

Previous to JCIDS, acquisition was often service focused and platform-centric [4].  

For example, the Army might be inclined to build a newer tank, improving upon the 

current design.  This might have been done without considering whether or not a new 

tank was really needed.  Indeed, the capabilities of another service may have already 

better addressed the threat for which the new tank would be designed, or a simple change 

doctrine could mitigate the issues at hand without requiring a new tank.  Will the new 

tank fit onto our cargo planes or ships?  Either way, precious resources would be wasted 

on a new tank that is not needed, won’t work with our other equipment, or duplicates a 

capability that already exists. 

In general, JCIDS seeks to preserve resources with a process that begins with the 

identification of desired capabilities and an organization’s current ability to address that 

capability (known as a gap analysis).  Once a gap in capability is identified, JCIDS seeks 

to determine whether or not we need to make something to fix it — a materiel solution.  

Otherwise, a non-materiel solution, such as new training or processes, may fill the gap.  

These new requirements are mixed with existing requirements, and then refined, 

prioritized, and reviewed by the Joint Requirements Oversight Council (JROC). 

JCIDS continues with concept refinement.  Next, it proceeds to a Functional 

Solutions Analysis (FSA), which determines whether or not a material solution is 
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required vs. a non-material or training solution.  Ultimately an Analysis of Alternatives 

(AOA) is done for choosing a specific material solution to procure.  The process of 

building a new technology proceeds through three milestones (A, B, and C), where key 

documents are produced and reviewed as to the technology is designed, prototypes are 

built and tested, and finally the technology is fielded under full-rate production.  The 

entire life-cycle of the technology is considered, from initial operational capability to the 

eventual retirement of the technology. 

Other processes operate along with JCIDS, such as the Planning, Programming, 

Budgeting, and Execution (PPBE) process for continually reassessing the DoD’s resource 

allocation.  Any new JCIDS program must be prioritized within the PPBE for 

consideration.  Software must also seek Joint Interoperability Test Center (JITC) 

certification in order to verify that it meets the Net-Ready Key Performance Parameters 

(NR-KPP), that qualify the software for full-rate production.  This is the last of several 

certifications before the J-6 issues the Interoperability System Validation letter that 

allows the software to be used operationally [5].  For more information on the JCIDS 

process, see Appendix A:  Fundamental Concepts. 

Paralysis in the current DoD JCIDS Process: 

“You will never understand bureaucracies until you understand that for 

bureaucrats procedure is everything and outcomes are nothing.” 

—Thomas Sowell, The Hoover Institution 

 

The paralysis within DoD acquisitions manifests itself in a slightly different way 

than it does for the typical consumer purchase, described earlier, but the analogy holds 

true.  To understand this, we must look at what happens in the JCIDS efforts that begin 
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the acquisition process.  In JCIDS, once a capability gap is identified, and possible 

solutions developed, an analysis is done to determine how “joint” the new proposal is and 

how much oversight it deserves.  JCIDS is designed to save resources, avoid duplication, 

and ensure analyses consider all services jointly; in JCIDS everything is “born joint.”  A 

new proposal may have impacts that affect all the services, and is categorized as “Joint 

Integration”, or the proposal may only affect a single service, and is categorized as 

“Independent”.  Furthermore, the JROC has oversight for and reviews all large 

acquisition category (ACAT) programs, including any other programs for which they 

have an interest [4]. 

This categorization and oversight is all well and good, except that it may have 

drastic impacts on the size and scope of the subsequent acquisition effort.  For large 

programs, it ensures risk is minimized, resources are efficiently spent, and ‘no stone is 

left unturned’.  For urgent war-fighter needs, however, JCIDS would add excess burden 

and discourage experimentation.  Thus the Joint Urgent Operational Needs (JUONs) 

process was developed in July 2005, to provide a mechanism for rapidly validating and 

resourcing these needs [6]. 

JUONs, according to CJCSI 3170.01G, 1 March 2009, defines urgent operational 

needs as those that: 

(1) fall outside of the established Service processes; and (2) most 

importantly, if not addressed immediately, will seriously endanger 

personnel or pose a major threat to ongoing operations. They should not 

involve the development of a new technology or capability; however, the 

acceleration of a Joint Capability Technology Demonstration or minor 

modification of an existing system to adapt to a new or similar mission…. 

 



 13  
 

These needs, according to the older 15 July 2005 version of CJCSI 3470.01, “… can be 

considered as life- or combat-mission-threatening needs, based on unforeseen military 

requirements that must be resolved in days, weeks or months.” [7].  Although not always 

‘life or death’, JUONs is a useful non-JCIDS method which could benefit IT acquisitions.  

The inclusion of ACTDs within JUONs also provides an avenue for fast IT development. 

The “born joint” aspect of JCIDS, JUONs, and JACTDS shifts the focus toward 

resource efficiency rather than time-to-field efficiency or mission-effectiveness 

efficiency, although the JUONs process attempts to mitigate this.  This is doing exactly 

what ‘Joint-ness’ was designed to do, but perhaps we need to reconsider the ramifications 

of this new focus.  A simple, urgently needed IT software tool may initially be paralyzed 

by JCIDS joint analysis and, unless it qualifies as a JUON, the joint analysis time can be 

excessive.  Furthermore, assuming a joint service need for development of a new tool, all 

services must coordinate together as they march through the acquisition process steps. 

Joint interoperability is significantly improved through joint integration efforts, 

but at a cost.  In this synchronized fashion, integration ensures that no one is left out of 

the loop and that all requirements are considered, but the drawback of integration is that 

we now must run at the speed of the slowest runner.  We cannot move through successive 

OODA-loop cycles until all interdependent pieces are ready.  One service may have a 

unique requirement for a tool capability that another service does not have, yet all 

services must wait until the analysis, design, and testing for that requirement are 

integrated into the whole process. 

In 2005, Vice Chairman of the Joint Chiefs of Staff, Admiral Edmund 

Giambastiani gave written testimony on JCIDS to the House Armed Services committee.  
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Vice Admiral Evan Chanik, chief of the Joint Staff  J-8, Force Structure Directorate, 

commented on Admiral Giambastiani’s testimony, suggesting future improvements to 

JCIDS, according to this excerpt from this February, 2006, Inside the Air Force report, 

“Joint Staff officials will 'tweak' JCIDS to better address urgent needs” [8]: 

…Chanik’s comments come several months after [Giambastiani], in 

written response to advance questions from the Senate Armed Services 

Committee during his confirmation process last summer, first raised the 

issue of tweaking JCIDS to address urgent requirements. In his responses, 

Giambastiani noted that the JCIDS process “is designed to impact mid- to 

far-term capabilities and funding (three years and beyond)” but has “less 

flexibility to quickly respond to emerging requirements...in the near-term 

budget years (one to two years).” 

 
Ultimately, limited acquisition authority and other ad hoc measures 

Congress has enacted to address the problem should give way to more 

permanent solutions, Giambastiani wrote. “In the long term, the JCIDS 

process needs to change to fall more in line with the demands and pace of 

today’s operations,” Giambastiani noted. 

 
Further criticisms of JCIDS, by current and former military officials, were published in 

Inside the Navy, and reproduced in the same Inside the Air Force article.  Retired Marine 

Corps Lt. Gen. Paul Van Riper, in an email to Chairman of the Joint of Staff General 

Peter Pace, and other senior leadership, “… slammed JCIDS for being “overly 

bureaucratic and procedurally focused.”   Van Riper continued: 

 
“My greatest concern is that as these concepts migrate into the curricula 

of professional military schools they will undermine a coherent body of 

doctrine creating confusion within the officer corps,” Van Riper 

continued. “In fact, I have begun to see signs of just that!” In a response 

sent several days following Van Riper’s e-mail, [USMC LtGen James] 

Mattis -- who is now in the post Van Riper held when he retired in 1977 -- 

agreed wholeheartedly. [8] 

 
Many of these criticisms have been taken to heart and on 1 May, 2007, CJCSI 3170.01F 

was released in order to continue to “…refine the JCIDS process and the information they 



 15  
 

require to ensure they are making effective, appropriate decisions in a timely manner. 

This update to the policies and processes continues that evolution of JCIDS to ensure our 

ability to continue to meet the needs of the joint warfighter.”  As of this writing, 

CJCSI3170.01G, 1 March 2009, is the current JCIDS policy release. 

Is our acquisition process fast enough for IT acquisition and software development? 

 
“The global situation is so unpredictable that the Acquisition system must 

be flexible and agile.” 

— Colleen A. Preston, Deputy Under Secretary of Defense for 

Acquisition Reform [9] 

 
Since the acquisition criticisms of 2005 through 2007 were voiced by high-level 

military leaders, it still needs more ‘tweaks’.  In a DefenseNews online article titled “DoD 

IT Procurement Too Slow:  Cartwright”, published 4 Mar 2009, Joint Chiefs Vice 

Chairman General James Cartwright’s comments at the eighth annual Naval IT Day 

conference were recorded.  The article describes the state of IT procurement as follows: 

The current method of procurement for information technology is so slow 

that by the time software systems and the like are purchased, they're out of 

date, Joint Chiefs Vice Chairman Gen. James Cartwright said March 4 at 

a conference for the IT industry. 

 
"It takes longer to declare a new [program] start than the lifecycle of the 

software package," Cartwright told an audience of IT industry and Armed 

Services representatives…[10] 

 
 With the advent of JCIDS, the AR pendulum has swung such that we are now 

excessively risk averse, with the tendency to not accept failure as a necessary part of 

development.  General Cartwright highlighted this concept, as the article continues: 

Aiming for a "perfect" IT solution is often the problem, Cartwright said.  

"We have this mindset that somehow whatever we field has to be perfect, 

so we'll spend a life of an application's utility testing it to make sure it's 

invulnerable and makes no mistakes," Cartwright said. "Looking for the 
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perfect solution is almost always a recipe for irrelevance, and we've 

proved that over and over and over again." [10] 

 
The challenge facing the Defense Department with IT procurement isn't 

that technology is too advanced, it's that the culture for procurement isn't 

working and needs to change, Cartwright said. [10] 

 
This pendulum swing effect is shown in Figure 1, in a graph excerpt from a slide 

presentation by Colonel Pete Rustan, of the National Reconnaissance Office.  Note that 

as of 2005, DoD is in a state of risk aversion which drives higher costs.  Whereas in 1957 

the state of total risk acceptance, although cheaper, was also undesirable in that there was 

a higher ‘potential energy’ for failure.  Furthermore, I submit that the fact that our 

process is swinging and unstable at all is a major factor.  We must seek stable 

equilibrium, balancing between cost and risk.  This equilibrium is likely different for 

large acquisitions, such as an aircraft carrier, than for smaller IT software development 

projects — our system must accommodate the range between these extremes. 

 

Figure 1 - The Program Management Pendulum Swing [11] 
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 General Cartwright then described that the JCIDS procurement method may be 

acceptable for building an aircraft carrier, but for IT procurement, the software we 

develop is "…irrelevant before they even get to milestone A” [10].  Cartwright suggests 

that although we should proceed with IT procurement improvement, the “DoD may not 

buy the most advanced solutions – on a large scale – that industry has to sell” [10].  In 

other words, like the typical consumer purchase example, we do not need to be on the 

leading edge for IT procurement.  I personally disagree with this in part, since IT security 

risks are continually discovered and exploited by hackers.  If we purposely decide not to 

stay ahead of this exploitation wave, we leave our software systems exposed to 

infiltration and manipulation.  I concede that many ‘wants’ are truly not ‘needs’, but 

security is usually in the ‘needs’ category.  Mr. Terry Halvorsen, deputy commander for 

Naval Network Warfare Command, confirms this in the same DefenseNews article: 

… we're not always going to use all of the most leading edge technology in 

large areas.  We may use it to build a specific mission or to meet a specific 

requirement in small ways and then … we'll adapt it.  Those of you on that 

leading edge need to sometimes step back a little and think about the 

tactical, operational problems that we have, particularly with that balance 

between security and getting missions [done][10]. 

 

With these changes in mind, I view the lack of AR as analogous to monetary 

inflation.  Holding onto $1000 cash for years and years, the cash will lose value relative 

to the economy, due to inflation; by doing nothing we lose money.  Similarly, the pace of 

change has the same effect if our procurement process is static.  If we do not continually 

invest in and evolve our procurement process through AR, in time we will be unable to 

keep up.  In deference to the earlier criticisms that the financial communities have not 

mirrored the AR movement, since 1986 we’ve had a two-year Program Objective 
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Memorandum (POM) process for budgeting DoD requests from the federal budget.  

Although changes can be made annually, this financial process is often the ‘long pole’ in 

the software development tent, introducing a large amount of lag into the system.  Due to 

future ‘technology inflation’, this 2-year POM cycle will become relatively shorter and 

shorter, in effect.  Again, by doing nothing, we lose money. 

Robert Carey, the Navy's chief information officer, commented on the acquisition 

system challenges for IT, and the inflexibility of our budgeting system: 

Things are moving really fast. The acquisition system, and more 

importantly the budgeting system, move at a different pace.  Today, if most 

of you come in and say, 'I've got this great idea. I want to give it to you,' 

all of our money has been displaced.  There is little agility in that system.  

When you go spend it on something else, an opportunity, you generally 

have to break something else.  That being said, we have the opportunity 

within the (Federal Acquisition Regulation) [and other areas to adopt new 

technology].  There's a lot of agility that affords us.  We need to look at … 

how do we move faster while maintaining the right levels of control on the 

system.[10] 

 
 Finally, and most recently, Defense Secretary Robert Gates identified AR as an 

emphasis area for the 2009 QDR.  The DoD Buzz online Defense and Acquisition journal 

describes Secretary Gates’ desires for better acquisition business processes as follows: 

Gates has repeatedly called for acquisition reform to get control over 

costs and the need to make “tough choices” on weapons and spending. 

“We must ensure that requirements are reasonable and technology is 

adequately mature” before programs go forward, he said. His moves to 

add acquisition personnel and reduce the role of contractors in 

procurement is likely just a first step. He wants to reform the acquisition 

system so it can speed weapons to the battlefield and lessen the need for 

ad-hoc procurement arrangements, such as JIEDDO, that were created to 

try and avoid the often Byzantine weapons buying process. On Gates’ 

comments on the need for acquisition reform, CSIS’ Anthony Cordesman 

had this to say: “The secretary advanced some key issues and priorities 

for reform. Unfortunately, exactly the same comments could have been 

made during the Eisenhower administration – and were.”[12] 

  



 19  
 

III.  So what do we do about it?  

 

How do we change our acquisition strategy to keep pace with our peers? 

 
“Be quick but don’t hurry.” 

—John Wooden 

Decrease scope and increase frequency of software development projects 

In short, we need a tighter OODA loop for cyberspace IT software development.  

We must accept the risk of what appears to be resource inefficiency and increased cost 

for the sake of development speed and increased experimentation.  I believe that the 

short-term excess cost will be outweighed by the long-term savings obtained by 

completing software development projects that better meet user requirements, in a more 

timely fashion. 

Increasing the frequency and decreasing the scope for each spiral or increment 

will give software developers a smaller and more recent set of requirements to work with.  

What is often termed ‘requirements creep’ is actually, in many cases, the nature of 

technology change.  Unfortunately, we are usually not able to obtain the adversary’s 

schedule in advance; therefore, we must concede that much of our strategy should allow 

for agile, flexible reaction to hostile action.  If our adversary’s software technology 

changes weekly, but our software development can only respond years later, we will 

likely lose the software battle — this reality should not be considered ‘requirements 

creep’.  Taking smaller bites, together with flexible budget authority for the PM 

(emphasis on authority), will help ensure that we have a better response to all the bumps 

in the software road.  Perhaps we can even evolve to a continuous integration and 
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development strategy for software builds, using the patching concept between major 

releases. 

Consider event-based strategy, technical maturity, and flexible budgets 

The current acquisitions process still depends highly upon accurate estimates for 

costs and depends upon highly refined requirements.  These estimates are refined too 

slowly in the JCIDS process to work well for a fast-paced IT project.  Failing to meet 

these imprecise, inaccurate, and optimistic estimates may doom a program to failure.  

Thomas Christie, former DoD Director of Operation Test and Evaluation (OT&E), in his 

Military.com forum article titled “Questioning Acquisition Reform”, states that 

“undertaking major developments without understanding key technical issues is the root 

cause of major cost and schedule problems.” 

One solution for this estimation dilemma has been to only allow the use of mature 

technology, as assessed using the Technology Readiness Level measurement system.  

Often, though, we cannot wait for this maturity to happen as we compete with an 

unconstrained adversary.  Indeed, without a program budget to start things off, some 

concepts and technologies may never get the incentive or ability to be matured.  Christie 

further highlighted this need for technical maturity: 

Of critical importance is demonstrating the technical maturity of the 

technologies embedded in a new system development prior to proceeding 

into accelerated development. Sufficient up-front funding and time for 

effective system and sub-system prototype demonstration and testing 

should be programmed to ensure an informed decision concerning the 

technical risk entailed in proceeding.[13] 

 
 Christie concludes that rigid time-based scheduling strategies create pressures to 

shortcut the proper steps and, in one case, “drove decisions to severely reduce 
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development testing to save dollars and stay on schedule.”  Dollars, time, and risk often 

compete in a sort of ‘Law of Competing Motives’ fashion (see Appendix A:  

Fundamental Concepts).  To alleviate this shortcutting pressure, Christie proposes using 

an event-based strategy instead of a schedule-based strategy: 

The decision authority should impose an event-based (as opposed to a 

schedule-based) strategy on the program to include meaningful and 

realistic "exit criteria" for each stage of development and production. 

Only if these criteria are demonstrated and satisfied should the program 

proceed to its next stage. [13] 

 
Mr. Christie also underscored his sentiments that the initial vector of a program is most 

important.  Root causes such as this, not excessive oversight, lead to problems: 

Most knowledgeable observers of and participants in this process have 

already identified most problems and proposed solutions for them.  

Pointing fingers at oversight agencies in the executive and legislative 

branches for the lengthy times from program starts to deliveries to the 

troops in the field does not address the root causes for those schedule 

slips. Neither does the cyclical invention of acquisition strategies with 

catchy buzzword titles come to grips with those root causes… 

 
…more informed management attention and discipline at the front end of 

the process should go a long way toward solving many of the problems 

plaguing defense acquisition. Nothing is new here. Time and again, major 

defense management reviews have reached the same conclusions. It is 

high time that decision-makers take seriously these findings, most of which 

are embedded in existing directives and instructions that govern the 

acquisition process, and make them an integral part of their program-

review and decision process. [13] 

 

Develop a separate cyber acquisition category 

“Nothing is so unequal as the equal treatment of unequals”. 

 —P. Larkowski, father of the author, adapted from a popular quote 

from George Orwell’s book “Animal Farm” 

 
After observing the pendulum swing effect described by Pete Rustan, I came to 

the conclusion that what is an ‘optimal’ cost-risk balance for a large acquisition program 
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may be different than what is ‘optimal’ for smaller, more agile, IT software development 

projects.  I thought of the following slide, Figure 2, from the March 2007 Air Force 

Acquisition Action Officer 101 briefing: 

 

Figure 2 - Acquisition Categories and Milestone Decision Authority [14] 

 

What I noticed in the slide is that the Space Programs, due to the unique aspects 

of the space environment, are treated differently from all other acquisition efforts.  

Currently, non-space IT software development falls under ACAT I or ACAT III.  There 

is no ACAT II for IT system software and Major Defense Acquisition Programs (MDAP) 

do not solely include IT.  Thus only Major Automated Information Systems (MAIS), 
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Non-major ACAT III systems, and “Technology and other projects” categories include IT 

software development programs. 

 I propose that we simplify this by adding a new column for ‘pure IT’ programs, 

(see Table 2).  Note 3, of the DoDI 5000.2, from December 8, 2008, helps discern what is 

or is not ‘pure IT’, (see Figure 3).  In general, Automated Information Systems are 

primarily IT, where the software itself is a service or capability, rather than an indirect or 

supporting entity.  Supporting software should develop according to its parent program. 

Table 2 - Redesigned Acquisition Categories for Information Technology 

  Information 

Technology 

Programs 

Non-Space 

Programs 
Space Programs 

Classification Sub-Designation MDA MDA MDA 

MDAP 

ACAT 1(D) (1AM) ASD/DoD CIO USD(AT&L) 

USecAF and SecAF 
ACAT 1(C) 

(1AC) SAF/AQ and 

SecAF 
SAF/AQ and SecAF 

Major System ACAT II TBD SAF/AQ or AFPEO AFPEO/SP 

Non-Major 

System 
ACAT III AFPEO or DAFPEO AFPEO or DAFPEO 

AFPEO/SP or 

DAFPEO/SP 

Technology 

and other 

projects 

ATD/ACTD, 

Joint War-fighting 

Experiments, 

Concept Refinements 

Varies with category Varies with category Varies with Category 

Relative Cycle  Short-term Medium-Term Long-term 

 
Note:  MAIS is removed and incorporated within MDAP.  Also, it is possible that we 

should rename “A”, “B”, “C”, or “D” suffixes for ACAT I programs. 
 

In short, we must not treat software development like an aircraft carrier — which is what 

MAIS/MDAP programs tend to do.  Separating IT in this way makes it easier to assess 

the cost-risk pendulum balance differently for the short-term natured ‘pure IT’ projects.  

Furthermore, software development that is integral to non-IT programs should not fall 

under this new IT column.  Also note that acquisition categories are largely cost-based 

and perhaps we should change this focus, (see the Future Research section). 
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Figure 3 - DODI 5000.2 ACAT I-III Programs Detail 
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What are technology-centric organizations doing to remain relevant?  How do they 

remain agile and responsive, while minimizing risk? 

 
"A good hockey player plays where the puck is, a great hockey player 

plays where the puck is going to be.” 

 —Wayne Gretzky 

Best Vantage, Inc., and the OODA loop 

 During my research of technology-centric businesses, believe it or not, a food 

marketing company caught my eye.  Best Vantage, Inc. followed the military’s example 

for their use of the OODA loop.  Best Vantage has developed some useful tenets that, 

ironically, the military will find useful as an example to follow for software development.  

If you look at the following figure, (Figure 4), you may see why this strategic food 

marketing company got my attention: 

 

Figure 4 - Best Vantage Inc., Strategic Food Marketing and OODA Loops 
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So what is Best Vantage doing that is so useful for software development?  

Within the Best Vantage Inc. Newsletter, from January 2009, author Daniel Best wrote an 

excellent article titled “Marketing inside the loop”.  In this article, he attributes thanks for 

“…the privilege of flying combat aircraft competitively under the instruction of U.S. Air 

Force pilots, to whom he remains eternally grateful for the life lessons learned.”  Mr. Best 

uses full military parlance, citing Col. John R. Boyd and Wayne Gretzky to describe how 

the food marketing business should think of marketing as a strategy.  Although I found 

the entire article amusedly interesting, there are two main nuggets of wisdom I wish to 

discuss here. 

I particularly like the aspects of “rapid decision-making capability”, “short 

product develop cycles”, “strong customer relationships”, and “ready access to capital” or 

“cash on hand”.  Also, the Energy-Maneuverability concept translates well into the 

acquisition-equivalent concept of ‘Resource-Maneuverability’.  These first nuggets of 

wisdom are in the following excerpt from Best’s article [15]: 

Question: How does your company’s management structure empower you to get inside 

your competitors’ O.O.D.A. loops? 

Energy and Maneuverability (E&M): 

Speed of execution hinges upon overcoming the energy and maneuverability of your 
competitor. For fighter pilots, “energy” translates into altitude (potential energy), thrust,  
gravity and speed (kinetic energy) and flexibility or maneuverability (pilot experience,  
aircraft design).  

What are the business equivalents of potential (stored) and kinetic (unleashed) energy? 
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A company’s potential energy can be construed as follows: 
 

 • An effective and rapid decision-making capability to confront competitive 
threats. 

 • High-quality and motivated personnel. 

 • New, not-yet-introduced technologies and short product develop cycles. 

 • Strong customer relationships (stored goodwill or karma). 

 • Strong brand identity, a quality image and high visibility. 

 • A low debt /asset ratio and ready access to capital. 

 • Cash on hand. 
 
A company’s kinetic energy might include: 
 

 • Hard-hitting, highly visible and effective marketing campaigns. 

 • New technology introductions of demonstrated value that capture the 
imagination of the marketplace. 

 • An enthusiastic, aggressive sales force, armed with effective marketing tools, 
compelling sales propositions, and T&E budgets. 

 
Companies should strive to overcome their competitors’ energy levels. A company with 
poor marketing energy risks being plucked out of the air by higher-energy competitors. 

 

In my view, all of these aspects need to be under the control of a single 

organization that is low-level enough to understand the customer, while high-level 

enough to understand the interdependencies and interaction of the project as a whole. 

The second nugget of wisdom includes the set of all questions gleaned from 

within Best’s article.  I’ve extracted them into Table 3 and translated the questions into 

their software development equivalents: 
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Table 3 - Important Questions Gleaned From Best Vantage Inc. 

 

Best Vantage Inc. Questions Equivalent Software Development 

Lessons 

Are you satisfied that you enjoy a clear, 

unobstructed view of your market,  

your customers, and yourself? 

Do the Program Manager and the Software 

Developers know the full job process of the 

targeted software users? 

Does your company have the internal 

capabilities to forge rapid decisions when 

necessary? 

What is the shortest time for approving the 

simplest change?  Do decisions require 

resolution at weekly meetings?  You are only 

as speedy as your least speedy change. 

Is your company pro-active or reactive to 

changing circumstances? 

Are we behind schedule?!?  Are we seeking 

feedback from the users? 

Does your organization’s command structure 

permit you to sift and prioritize available 

options to arrive at the best possible 

decision…quickly? 

Who is required to approve changes?  Does 

change require a committee, small group of 

relevant experts, the program manager, … the 

President? 

How does your company’s management 

structure empower you to get inside your 

competitors’ O.O.D.A. loops? 

Is the decision authority delegated to the same 

group that is also responsible and accountable 

for success or failure? 

What would a self-audit of your company’s 

energy states reveal? 

How good is our energy position? 

How tight can we turn and adapt?  How much 

authority or budget do we command?  How 

good are we at implementing changes? 

In an environment squeezed by reduced profit 

margins and overworked personnel, is your 

company becoming more, or less maneuverable? 

What is the energy trend?  Is it “Good getting 

better”, “Good getting worse”, “Bad getting 

better”, or “Bad getting worse”? 

 

Google, Inc., on ‘Beta’ software and Agile Practices 

“To say that companies or CIOs are reluctant to embrace agile is like 

saying they wouldn’t take aspirin for a headache … and they’re not only 

not taking the aspirin, they’re banging their heads against the wall and 

wondering why it hurts.” 

— Jim Johnson, Standish Group Chairman 

 

Google, Inc., is a widely recognized company that is popular for its extremely fast 

and accurate internet search engine.  To a slightly lesser extent, Google is also well-

known for their lead in development of trend-setting software technologies for 
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simplifying, filtering, and presenting large amounts of data in a highly intuitive way that 

even computer-illiterate people can easily learn to use.  Many businesses use Google 

technology for their own internal network search engines.  Government organizations, 

such as NASA, have partnered with Google to display NASA’s Hubble Space Telescope 

images, and other space imagery, within their Google Earth and Google Sky applications.  

One may also be aware that most of Google’s software always seems to be in 

“Beta” mode — an indicator typically meaning that software, although publicly released, 

it is still in draft.  Perhaps it is Google’s way of legally avoiding responsibility or liability 

when your data is lost from a Google Mail account?  Mr. Paul McNamara, of Network 

World, asked Google about the beta issue and documented his correspondence in his 

PCWorld article “Google Has Gone and Redefined 'Beta'”.  I think the following quote 

from Google speaks a lot about Google’s attitude toward software development in a fast-

paced world [16]: 

We believe beta has a different meaning when applied to applications on 

the Web, where people expect continual improvements in a product. On 

the Web, you don't have to wait for the next version to be on the shelf or 

an update to become available. Improvements are rolled out as they're 

developed. 

 
Wow!  I’m not sure that the military is ready to just call everything ‘beta’ and release 

software that is not tested and certified, but I do think we can learn from this philosophy 

of “continual improvements” that are “rolled out as they’re developed”.  Acquisition is 

such a difficult process to get through, given JCIDS, the PPBE system, JTIC security 

certification, etc., that we tend to group as many capability requirements as we can within 

each release or software update.  In essence, we are catering to the time it takes to cycle 
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through the process rather than making the process cater to how fast we wish to cycle 

through new changes. 

It does not surprise me that Best Vantage, Google, and many other business 

industries seem to be grappling with the same fundamental challenges of keeping up with 

rapid change.  In my research of these businesses, the idea of ‘Agile Development’, 

‘Agile Practices’, ‘Agile Manifesto’, and other similar ‘Agile’ concepts occurred often as 

a common technique for adapting to the fast-paced world of IT software development.  

Like any buzzword methodology, ‘Agile’ has been overused and ‘stolen’ by many 

different organizations claiming to be ‘Agile’.  The Air Force even adopted the term in 

November, 2001, according to the Program Manager magazine article “Acquisition 

Center of Excellence Will Drive New Capabilities to the Warfighter” [17]: 

The new office, led by a Senior Executive Service member, also will be the 

driving force for implementing “Agile Acquisition,” a sweeping series of 

initiatives designed to streamline the Air Force's acquisition systems. 

The plan was endorsed at a meeting of the Air Force's four-star generals 

and senior civilians in November 2001. 

 
Some organizations have adapted honest and productive efforts for ‘Agile’ while many 

others have only attempted to rebrand their poor processes with this new jargon.  One 

programmer, Steve Yegge, likened ‘Agile’ to fad diets, in that there are many diet plans 

out there and people want them to work, but nobody seems to lose any weight.  Thus 

Yegge describes the existence of both ‘Good Agile’ and ‘Bad Agile’ [18]: 

Well, as I mentioned, over the past year I've had the opportunity to watch 

both Bad Agile and Good Agile in motion, and I've asked the teams and 

tech leads (using both the Bad and Good forms) lots of questions: how 

they're doing, how they're feeling, how their process is working. I was 

really curious, in part because I'd consented to try Agile last Christmas 

("hey, it can't hurt"), and wound up arguing with a teammate over exactly 

what metadata is allowed on index cards before giving up in disgust. Also 
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in part because I had some friends on a team who were getting kind of 

exhausted from what appeared to be a Death March, and that kind of 

thing doesn't seem to happen very often at Google. 

 

Yegge’s final sentence says a lot — Google has ‘Good Agile’, while his friends did not.  

In the same vein of thinking, I like to say “Before evaluating what is said, first evaluate 

who is saying it and why”. 

So what does Google do for its agile software development?  In 2006, Google 

published a slideshow document about “Agile Practices on Real-World Projects.”  In this 

document, Google lists the following ‘Agile’ principles: 

 

Figure 5 - Google software development 'Agile 101' [19] 

 

To the uninitiated, some of this may or may not make sense; so I’ll make my best effort 

to translate each of Google’s ‘Agile 101’ bullet statements in the following paragraphs. 
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Clear, customer visible stories 

First, a story is a human-recognizable statement or sentence that defines the 

customer’s requirements for the software.  An example:  “As an authenticated user, non-

administrator, I must be able to drag-and-drop graphic images from the scheduling 

module to the reports module so that I can present my schedule solutions to my 

commander.”  The key difference between ‘stories’ and JCIDS ‘requirements’ 

development is that ‘Agile’ advocates an “ongoing, unfolding conversation about the 

details” and focuses on the “conditions of satisfaction” [20].  “Customer visible” simply 

means that it is the customer that must understand the story statement.  After all, they are 

the reason for the software programming.  Several companies indicated that they teach 

the customer how to write their own stories along the way.  Regardless, the customer-

developer interaction is early and continuous through the use of stories.  Stories, like 

requirements, are rank-ordered according to customer preference. 

Test-Driven Development 

The ‘test-driven’ concept advocates the idea that the testing procedures for 

ensuring the software works should be written before the software is coded.  No test pilot 

takes off on a test sortie without a detailed, coordinated, and approved test plan… neither 

should software developers start coding before knowing how to test.  This test plan also 

aids documentation — something often skipped by ‘bad agile’ developers.  Stories 

naturally lead into test statements, and this brings testing into the development cycle early 

in a concept called Story-Driven Test Development (STDD). 
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The HashRocket company, (named after the image likeness of the text called a 

hashrocket “=>”), is a pioneering web application consultancy group that specializes in 

the Ruby programming language and embraces the test-driven concept wholly.  

According to HashRocket, risk is minimized by building and testing often: 

Building a successful web application is rocket science ...but it doesn’t 

have to take forever. Hashrocket is an expert consultancy group that uses 

best-of-breed technologies like Ruby on Rails to deliver the highest quality 

software in the least amount of time. 

 
Figure 6 shows a screenshot of actual stories, from the HashRocket company, along with 

programming remarks on the right-hand side and scenario statements for how to test for 

‘satisfaction’ of the requirement[21]. 

 

Figure 6 - ‘Stories’ are requirements the customer and developer understand 

 

Continuous Integration 

With continuous integration, the various code modules are tested before mixing 

them together with the rest of the software application.  Furthermore, according to 

Google, “the entire application is kept in a deployable state from the first week.” [19]  In 

this way negative synergistic effects and other errors are detected early in the process 

rather than just in time before a design review. 
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Short Iterations 

Google uses one week iterations “for easier course corrections, and [to] shorten 

the feedback cycle.” [19]  This is crucially important in that the short cycle, combined 

with a continuously deployable application, allows the customer to validate the design 

requirements through “play testing”.  Our current processes, by contrast do not provide 

anywhere near this amount of testing and customer validation.  This means that any 

errant programming continues on the wrong vector much longer, until it is much costlier 

to fix.  In the IEEE Software article, “Is Internet-Speed Software Development 

Different?”, the authors advocate agile development over traditional methods because it 

provides such a flexible environment for highly dynamic requirements: [22] 

Developing software at Internet speed requires a flexible development 

environment that can cope with fast-changing requirements and an 

increasingly demanding market. Agile principles are better suited than 

traditional software development principles to provide such an 

environment. –IEEE 

 

Pair Programming — crew concept/ formation flying for computer programmers 

In pair programming, two programmers work together on a single machine — 

each programmer with a keyboard and mouse.  I liken this to formation flying, or the 

crew concept, for Air Force aviators.  It takes training and familiarity at first, but the 

benefits and synergy of two heads are better than one.  Pair programming is one of the 

more contentious concepts of agile programming and ‘Extreme Programming’ (a form of 

agile).  People tend to either love it or hate it.  Even Google acknowledges that pair 

programming is “…probably the most controversial part of [Extreme 

Programming].” [19]  Many feel that two programmers can get more done separately, 
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working in parallel on different code modules.  In practice Google claims that pair 

programming “accelerates knowledge transfer” because “Your 80/20 rule overlaps 

favorably with your partner’s 80/20 rule.” [19]  Visiting programmer Mr. Paul Barry 

describes learning about ‘ping pong pair programming’ at HashRocket, and how it aids 

test-driven development [23]: 

Pair programming, at least to the degree that it is done at Hashrocket, 

was a new experience for me. Every developer works in a pair 

programming setup, with a laptop hooked up to a 30-inch display and two 

keyboards and two mice. Having a large monitor, two keyboards and two 

mice may seem like a luxury, but it really helps you get into the flow of 

pair programming. 

 
One pair programming technique that makes TDD easier is ping pong 

pair programming. When doing ping pong pair programming, when you 

sit down to build a feature, the first person in the pair writes the test. Next, 

the second person in the pair writes the code to make the test pass. Then 

the second person writes a test for the next feature, and the first person in 

the pair implements it. By repeating this process throughout day, you have 

several benefits. First of all, it avoids the scenario where one developer 

does most of the work and the other developer just zones out and gets 

distracted by something else, because you are constantly switching back 

and forth. Also, like two people who go on a diet together to help each 

other stick to it, one developer doesn't let the other developer get lazy and 

skimp out on the tests for a specific feature. That doesn't apply just to the 

test. As long as you have a pair of two experienced programmers, one of 

them [isn’t] going to let the other get away with writing a nasty piece of 

code. It's like a real-time code review. 

 

Extensive Customer Involvement 

Google believes that the “customer owns the priorities, [and] the developer owns 

the cost estimates.”  This means that a feature isn’t marked as “done” until it is installed 

on the test demonstration server and approved by the customer.  The story-driven and 

test-driven aspects ensure continuous customer-developer involvement, which in-turn 

ensures a solid software application. [19] 
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How Google estimates complexity instead of duration or budget 

Google advocates estimating complexity instead of duration, since people are 

“better at estimating complexity than duration.” [19]  They use a point system which 

estimates the complexity of each agile programming story in terms of 1, 2, or 3 points, 

based on the following table of criteria: 

Table 4 - The Google point system for estimating complexity [19] 

One point  “I know exactly how to do this, and can do it in half a day.” 

Two points  “I know exactly how to do this, but it will be some work.” 

Three points  “Somehow we will implement this feature.” 

 
They go on to describe that three-point stories often become even more complex, driving 

the need to break down the story into smaller stories.  “[Larger than three-point] tasks 

have fractal complexity:  Small tasks are more predictable than large ones”, so Google 

always tries to break the stories down to three-points or less. 

 The customer (or PM) takes the stories the developer estimated for that week and 

prioritizes them, while keeping the complexity point estimates in mind.  Google 

programmer development teams (pairs) begin coding the story modules.  Using the point 

estimates, Google tracks how many points are coded by the development team each 

week.  In their experience, “a focused team gets about as much done each week as it did 

the week before.”  This velocity tracking method builds trust between customer and 

developer. Cost features, based on these estimates, are openly exposed to the customer, 

giving them greater control and creating “alignment between the developer and the 

customer.” [19] 
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Does Google’s agile programming method scale well to large projects? 

Google provided three examples to counter the following agile programming 

myths about scalability: 

• “Agile is great for small projects, you can’t make it work in a big 
company.” 

• “Agile is great for exploratory projects, where you don’t know the 
requirements up-front, but not for projects with big up-front 
requirements.” 

• “Agile works for Greenfield projects, but not for big legacy applications.” 
 
In the most telling example, a large web application was developed using 

traditional parallel development methods, but the persistence layer portion of the code 

wasn’t ready by the time the user interface coding needed to start — parallel anything 

breaks down when dependencies are involved.  Google used agile programming methods 

and reduced the time-to-market for the application “by months on a 6-month release 

cycle.” 

Google described how non-agile coding quality was far inferior to the test-driven 

development quality of agile programming.  An application had been developed where 

one of the subsystems was coded with non-agile practices.  This subsystem was less than 

10 percent of the size of the whole application, but contained more than 75 percent of the 

coding errors.  This one subsystem caused the whole application to delay release by 4 

weeks — one third of the planned 12 week release cycle! [19] 
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DISA on improving software development using agile methods 

 

Software Development 

Dr. Steven J. Hutchison, Defense Information Systems Agency’s (DISA) test and 

evaluation executive, recently wrote an extensive article titled “Reinventing IT Test and 

Evaluation”, in April of 2009.  On the subject of Software Development, Hutchison 

writes the following [24]: 

Once upon a time, DoD acquired IT following a different process from 

weapons systems. In 1996, the department merged the acquisition of 

automated information systems into the DoD5000 series. When you think 

about that, the IT revolution was in full swing in 1996, with major online 

businesses, such as eBay, Amazon and Google, emerging as IT leaders. 

Given what emerged in the commercial sector in the decade-plus since, 

hindsight might suggest that DoD’s “one size fits all” model has just 

about eliminated innovation in approaches to acquisition and results in 

much of the department’s cost overruns, poor performance and lengthy 

schedule delays. In fact, a recent analysis of major automated information 

systems shows that the average time from program start to initial 

operational capability, following the DoD5000 model, is 91 months. 

 

Hutchison then describes how the commercial sector has developed many 

approaches to improve software development and cites agile programming as “… one of 

the fastest growing and most productive approaches to software development.”  He 

further advocates that these agile principles “must be part of the requirements process, 

development, testing and oversight.”  He continues to describe how we should not front-

load our expectations, nor expect everything in the Capability Development Document 

(CDD) to be delivered “… in the first increment”.  Hutchison feels we should be required 

to “…prioritize the requirements within the CDD, and focus the iterations on the 
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immediate needs of the war-fighter — the one or two capabilities that will have 

immediate beneficial impact if fielded” [24]. 

The agile PM has to transition from the waterfall approach to a highly 

collaborative environment where all stakeholders work together to 

develop, test, fix and verify solutions. In DoD’s evolutionary acquisition 

waterfall process, each increment is guided by the JROC, and managed to 

the same set of milestones. This is not an agile process [24]. 

 

Software Testing 

On the subject of software testing, Hutchison declares the following [24]: 

For T&E to be an enabler in such an environment, testers must be equally 

agile. Long lead time test plan approvals and lengthy staffing of test 

reports cannot be the standard, or T&E risks becoming an obstacle rather 

than an enabler. The approach I recommend is designed to achieve this 

objective. It is an integrating model where activity by one is accepted by 

all. 

 
I refer to the model as capability test and evaluation (CT&E), and I 

describe it this way: “one team, one time, one set of conditions.” The 

intent of CT&E is to focus the four T&E activities on the goals of that 

iteration, and merge them into one short duration test period. 

 
 

Hutchison considers testing as yet another “overly prescriptive process,” with four 

separate test activities occurring within each development cycle in the DoD IT T&E 

community.  These four activities include developmental, operational, JITC, and IA 

certification and accreditation testing.  These different organizations compete with each 

other for “time to conduct their events, under different test conditions, for different 

decision-makers”. 

Despite the commonalities of these test activities, Hutchison laments our lack of 

coordination and teamwork, which leads to differing vectors for the different test 

activities [24]: 
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Unfortunately, we don’t always conduct these test activities in an 

integrated manner; nor do we combine results in evaluation reports, and 

this can mean that different information is being presented to the decision-

makers — the milestone decision authority, interoperability certifier and 

the IA certifier, or “designated approving authority.” Acquisition 

decision-making would be greatly improved if the various T&E activities 

were synchronized to produce a single evaluation that satisfies the needs 

of all three decision-makers. 

 

Additionally, the test process itself “typically exceeds six months” and it is not conducive 

to agile programming processes that need to test all of the time [24].   

Improving on JITC certification 

In 2008, DISA made concerted efforts to improve upon lengthy and cumbersome 

portions of the test process.  JITC certification is an important but huge obstacle in the 

grand scheme of things.  Despite DISA efforts, they have yet to gain full support for these 

changes.  According to Hutchison: 

Last year, a combined industry/government council on OT&E 

recommended sweeping changes to the format and content of the T&E 

Master Plan (TEMP). During the committee discussions on the proposed 

TEMP, it was clear that everyone thought the ideas were good and should 

be pursued. Unfortunately, no decisions were made to experiment with the 

format, and it looked as if the good work of the group was going to fall by 

the wayside. 
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Significant time savings can be accomplished with simple reforms to the testing 

process, as Hutchison points out: 

DISA volunteered to use the new TEMP for the Net-Centric Enterprise 

Services program, since a new TEMP was required for the pending 

Milestone C. For comparison purposes, the Milestone B TEMP exceeded 

360 pages, required 18 signatures and took over six months to obtain 

approval once it began the staffing process. The new document prepared 

for Milestone C, which is generally a far more detailed plan, took only 70 

pages, 14 signatures and 90 days from the beginning of document 

preparation to final approval. That’s a successful pilot by any measure. 

 

Given the DISA experience, the rest of the DoD should follow their lead in adopting agile 

methods to improve JCIDS.  Hutchison recommends immediate update of the DoD 5000 

regulations, but advises that the acquisition community should not wait for it and should 

migrate toward agile development and testing.  Hutchison concludes his comments on 

agile and testing with recommendations for supervision [24]: 

… we need agile oversight. We can improve the way we acquire and test 

information technologies by focusing on the immediate needs of the 

warfighter and development in short duration sprints. In T&E, a one-

team, one-time, one-set-of-conditions approach is essential to delivering 

improved capabilities in significantly less time. 

 

Determine how to integrate with existing JCIDS process 

“… agility is an important attribute for a successful project since it is the 

most effective way of dealing with uncertainty and avoiding or if 

necessary responding effectively to crises.” 

— Steve Adolph, What Lessons Can the Agile Community Learn 

from A Maverick Fighter Pilot?[25] 

 
The last major area of study involves how we can better integrate efforts we 

already have into the acquisition process.  Not only should we adopt the best practices of 

the agile development community, but we need to take advantage of the experimentation 
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efforts in action today.  First, we need to establish a balance between JCIDS, traditional 

development, and agile development. 

Balancing between JCIDS and Agile: Learning from the JPADS ATCD success 

[JPADS] revolutionized the way we resupply the War-fighter…Saving 

American blood is a good thing, and this will definitely do it. 

—Maj Gen Scott Gray, Commander, Air Mobility Warfare Center 

 

Choosing between a traditional method and the agile method is not and “either/or” 

decision.  We can use the most conservative way of doing acquisition, in terms of 

resource efficiency, or we can adopt agile techniques to shift our priority toward ‘time-to-

market’ efficiency.  I argue that we can adopt most of the agile concepts and improve 

development speed and efficiency without reducing quality or increasing risk.  Yet, even 

if we make significant improvements, there will always be a need for rapid custom 

software development for unforeseen, unplanned, and unbudgeted urgent war-fighter 

needs. 

We should simply use risk analysis to determine whether or not to use JCIDS and 

traditional acquisitions vs. JUONS-type of agile software development and procurement 

method.  There is a recent non-IT example we can learn from — the Joint Precision 

Airdrop System (JPADS).  This system uses GPS-guided steerable parachutes to 

accurately deliver needed supplies to the war-fighter — even in the high-altitude, 

mountainous terrain of Afghanistan.  JPADS allows the cargo aircraft to remain at high 

altitude, out of the range of most enemy anti-aircraft weapons, and still get the cargo drop 

where it is needed. 
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In 2004, JPADS started out as a Joint ACTD with a few prototypes for various 

sizes of parachutes and weights of cargo.  JPADS became a formally funded program in 

2008, largely due to the ongoing operations in Afghanistan for Operation ENDURING 

FREEDOM.  I often wonder if JPADS would have survived had the urgency of war not 

driven the high-level visibility needed to encourage funding for this revolutionary system.  

Even so, it took a “partnership of U.S. Joint Forces Command, U.S. Transportation 

Command, U.S. Special Operations Command, U.S. Army, U.S Air Force, U.S. Marine 

Corps, and others…” to help make it work, according to the Under Secretary of Defense, 

in the article, “Success Story:  ACTD Helps War-fighters Get High Altitude, Accurate 

Parachute Resupplies”. 

 

Figure 7 - JPADS enables standoff precision airdrop using guided parachutes[26] 

 
There was difficulty of retroactively performing JCIDS processes and analyses on 

the JPADS ACTD.  I saw this firsthand while working in the Mission Planning Systems 

branch of the Plans and Programs division of Headquarters, Air Mobility Command 

(AMC).  Risk Analysis had determined that the JPADS ACTD was an urgent war-fighter 

need and it was funded accordingly for rapid development.  Future increments of JPADS, 

however needed to proceed through normal acquisitions methods — including a 
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Functional Solutions Analysis, Analysis of Alternatives, the production of an Initial 

Capabilities Document (ICD), etc.  When many of these initial JCIDS steps are made to 

determine the risk of proceeding toward low-rate initial production and eventually full-

rate production, it seemed that JPADS had already passed these hurdles—since avionics 

integration requirements were already accomplished.  Indeed the Capabilities 

Development Document (CDD) was approved for use in lieu of the Capability Production 

Document (CPD), which enabled Milestone C approval for full-rate production.  

Regardless, just as changing JCIDS ACAT levels generates cumbersome “what if” 

questions and retroactive process requirements, the JPADS ACTD also had to overcome 

these ‘square peg, round hole’ issues when it was refactored into JCIDS. 

A better way to integrate advanced technology:  The WIDE/GRS ATD Struggle 

JPADS was a success story in that it was a valuable system that quickly achieved 

operational fielding to meet urgent war-fighter needs.  JPADS was also successfully 

integrated into JCIDS for future increments.  Another ATD that I had experience with 

has, to date, not been so privileged. 

The Tanker Airlift Control Center (TACC) commands and controls all transient 

AMC aircraft throughout the world.  A TACC-managed aircraft is landing or taking off 

somewhere in the world every 90 seconds, so the TACC can be a busy place at times.  

Several custom programming projects had been created by people with computer skills, 

usually evolving spreadsheets that had been made to help TACC controllers with 

repetitive tasks — improving some of the customized software used by the floor 

operators to keep track of the nuances of each AMC mission they controlled. 
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Much of the command and control (C2) software was developed like a large 

database, where the mission details, aircraft tail numbers and details, aircrew names and 

details, cargo details, flight plan and diplomatic clearance details, weather and other 

details, were all centralized for improved management.  Although state-of-the-art at the 

time, many of these legacy systems consisted mostly of text displays with massive 

amounts of look-alike data, see Figure 8. 

 

Figure 8 - Legacy Software Tool showing hard-to-read text displays [27] 

 

In 2006, a team from the Air Force Research Laboratory (AFRL) was working on 

an ATD for visualizing C2 data.  The Work-Centered Interface Distributed Environment 

(WIDE) and Global Response & Synchronization (GRS) ATD’s were both managed by 

the Human Effectiveness and Information Directorates at AFRL.  This team took a 

human factors approach toward simplifying and filtering massive amounts of mission-

related data and presenting it in an intuitive graphics display for the users to better 



 46  
 

command and control with.  WIDE is a Work-Centered Design brand of the Cognitive 

Engineering field of human factors [28]. 

I had the opportunity to evaluate WIDE and GRS, validating it from an 

operational perspective, and I was extremely impressed with the C2 capabilities offered.  

I often described WIDE/GRS to be the “Google Earth for Command and Control” in that, 

like Google Earth, the software was graphical and easy to use.  It let you refine, filter, and 

re-filter the data down to only what you wanted to see — significantly reducing problem 

complexity, (see Figure 9). 

 

Figure 9 - WIDE/GRS ATD showing the Multi-Mission Timeline View 

 
WIDE featured fully interactive mouse-enabled drag-and-drop capabilities to 

graphically manipulate and query the data visually.  If necessary, the raw text data was 

available for precise and detailed analysis.  In this way, WIDE/GRS presented the best of 

both worlds by allowing the user to quickly operate on the data graphically and 
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intuitively, while also allowing the user to ‘drill down’ into the textual data as needed, 

(see Figure 10). 

 

 

Figure 10 – WIDE/GRS ATD showing interactive timeline [28] 

 
Experienced TACC floor controllers are able to fuse the massive amount of 

dynamic data in their head and come up with solutions, but this data fusion is difficult to 

learn and it takes a while to immerse and become familiar with the data once ‘on shift’.  

WIDE/GRS automated much of the fusion and elimination of incompatible solutions.  

This reduced the amount of data and simplified the decision process of weighing options 

in order to arrive at a solution. 

The improvement in timeliness and increase in quality of solutions and decisions 

was born out in field testing with operational TACC controllers.  Tests were run using 

both the legacy software systems (information-equivalents similar to what the controllers 
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were already familiar with in the TACC) and then using the WIDE/GRS software.  After 

a 30 minute familiarization training session, the controllers were presented scenarios and 

evaluated on the timeliness and quality of their solution to the scenario.  An example 

scenario might involve finding the best airplane to perform an emergency medical 

evacuation of a patient, while minimizing the impact on other missions.  WIDE/GRS 

testing showed a drastic improvement over legacy methods, especially for the less 

experienced controllers, and enabled them to get the correct solution in significantly less 

time.  A sample of the test results are shown below, in Figure 11. 

 

Figure 11 - WIDE ATD reduced time and error by more than half [28] 

A concerted effort was made to integrate WIDE/GRS technology into existing 

TACC C2 software.  However, due to funding difficulties and issues with building a 

dynamic interface to the centralized mission data, the efforts to field WIDE/GRS 

technology to the operational TACC controllers are currently on hold.  There is an 
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ongoing effort to integrate this ATD into software used by USTRANSCOM, (the result 

of which has yet to be determined).  Perhaps it will be saved from the metaphorical 

warehouse of crates …once we can get “top men working on it … top men” [29]. 

 

 

Figure 12 - Crate Warehouse from the movie "Raiders of the Lost Ark" [29]. 

 

Increase the use of MAJCOM and AOC ‘business centers’ 

For much of my career I’ve developed and improved upon custom software tools, 

saving users from endless stacks of sticky notes and automating many of the tedious and 

error-prone tasks often encountered when managing people, airplanes, and cargo.  The 

problem with these ‘stove piped’ efforts is that most military officers move every couple 

of years and there is no maintenance plan for the stovepipe software, other than tracking 

down the original programmer for troubleshooting. 
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Despite the stove pipe issue, the alternative was also undesirable.  With the 

increasing workload and decreasing manning, we’ve become more and more dependent 

on technology to fill the gap, yet that needed technology capability takes years to develop 

once the need for it is realized.  Hence, there have been many occasions to create 

stovepipe software that was meant only to fill the gap until a formal software acquisitions 

effort came in to replace it. 

Often, nothing has been developed to replace stove pipe software.  In fact, a 

software tool I developed, in 2004, for deployed operations command and control was 

still being used the last time I checked in 2007.  I released an update to the tool in 2006, 

(based on unsolved challenges I had since figured out), making sure it properly calculated 

for leap years and other ‘future-proofing’ efforts.  In some respects, this software enabled 

the bad aspects of our system in that, had the software not been developed, the urgent 

operational need for a formal acquisitions effort would have demanded new technology. 

The Happy Medium 

The TACC has a software ‘business center’, as it was called in 2007, which has 

since become a ‘rapid application and requirements development branch’.  This branch 

has several civilian personnel working with military leadership.  They developed, among 

other things, custom tools requested by the TACC commander, et al.  They programmed 

web applications and designed custom interfaces between some of the stove pipe 

software and larger enterprise applications.  They were not funded or manned adequately 

enough to take over all of the stove pipe software that had been developed, but they did 
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take over some of the software maintenance.  In a TACC briefing, I likened the IT 

software development environment as pictured in Figure 13, below. 

 

Figure 13 - Software Development Turn Circles 

The TACC business center was a happy medium between stove piped 

programming and waiting too long for desperately needed software tools deemed not 

important enough for the budget.  Again, I fault the way we budget, not necessarily how 

much we budget.  Follow this scenario, for example, when your hard disk fills up with 

files, do you try to find one or two large unneeded files and delete them, or do you delete 

ten percent of every file?  Of course, you don’t delete ten percent of every file, since this 

would corrupt all of the files!  Why then, when we need to trim our budgets, do we seem 

to think it is ‘fairness’ that matters, cutting all programs equally?  The end result is that 
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every program is now corrupted and must adjust their acquisition strategy — often by 

dropping features or by extending the development timeline and costs into the next fiscal 

year’s budget. 

Linking MAJCOM and AOC business centers with ATDs, ACTDs and JACTDs 

My overall argument with respect to business centers is that we lose time and 

money while we wait for large software programs that take too long to field.  Stove pipe 

programmers are filling the gap, but are not a viable long-term answer either — there is 

too much risk in depending on unmaintained, often incompletely developed software 

tools.  The answer is to increase the use of business centers.  Furthermore, these business 

centers can and should link with ATDs, ACTDs, and JACTDs.  I believe, given the agile 

principles explained earlier, that MAJCOM or AOC level business centers have the right 

people to play the ‘customer’ role with developers of all types, including research labs 

such as AFRL and DARPA.  The business center can also create a viable, funded, 

sponsor for ‘pulling’ advanced technology efforts into the JCIDS process, feeding into 

the ‘experimentation’ and ‘concept refinement’ areas.  We must make integration of at 

least some advanced technology efforts the ‘rule’, not the ‘exception to the rule’. 
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Pros of MAJCOM and AOC business centers: 

• Software is tailored and custom developed to the unique requirements of users 

• There is more face-to-face interaction between customer and developer 

o This improves software quality by better refining requirements 

• There are fewer competing priorities and budgets within a MAJCOM or AOC 

• Less ‘one-size-fits-all’ software development 

• Business centers can foster innovation through working groups and conferences 

o Business centers exchange lessons learned, standards, and frameworks 

• Reduces single-point-of-failure dependencies on any particular software 

• Users may get the software tools they need instead of waiting for enterprise 

developers to build low-priority features into already bloated applications 

Cons of MAJCOM and AOC business centers: 

• Duplication of effort occurs when two different centers develop similar tools 

o Budgeting can more efficient with increased economy of scale 

• Tools for one business center may be incompatible with another’s 

• Different language/procedures/cultures develop because different tools are used 

• Must force cross-flow and interplay between centers 

o Working groups and conferences require significant effort 

• Resistance to adopting another center’s products, organizational inertia 

• Decentralization complicates centralized security management 
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IV.  Conclusions and Future Research 

“Program turbulence is #1 obstacle to commercial investment in defense 

projects” 

-  Norm Augustine 

 

Findings 

  

The following conclusions were reached:  (a) software projects must be scoped 

and scheduled for development cycles on the order of months, not years, and use open 

architecture, Agile Development methods, and scalable designs with modular code; 

(b) budgets must be stabilized for long-term integrity, with a software development 

working capital fund reserved for JUONS-like urgent IT needs; (c) increased use of 

MAJCOM- or AOC-level business centers must be encouraged and funded to produce 

tailored software modules that interface with larger agile programs built to accept these 

modules; (d) we must take advantage of ATCD and ATD efforts from research 

laboratories, giving MAJCOM and AOC business centers budget authority to “pull” a 

limited amount of ATDs, ACTDs, and JACTDs from the labs, through the appropriate 

System Program Office, to produce and field operational software (by default, not by 

exception); and (e) periodic software development working groups and conferences 

should be continued, but with emphasis on standardization and sharing of lessons learned 

between services, MAJCOMs, and AOCs. 

The aviator part of me thinks of the two-year POM process, JCIDS, and other 

process limitations as a large turning radius, limiting the maneuverability of our 

metaphorical acquisitions aircraft.  The IT pace of change is like the tiny Mig-15 fighters 

of the Korean conflict… small, able to tightly turn, and able to out maneuver our less 

agile F-86 Sabre jets.  Yet, with our superior tactics and training, our pilots were enabled, 
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empowered, and indeed expected to out-fly the Korean enemy — which they eventually 

did with better than an eight to one kill ratio.  Will we be able to do as well when the 

‘cyberspace dogfight’ comes upon us? 

 

Figure 14 - The Software Development Dogfight 

 

Future Research 

 

Develop Separate DoD 5000 Instructions for Information Technology 

Future research should continue with the development of IT acquisition as a 

separate entity from both Space and non-Space acquisition (refer to Figure 2 and 

Table 2).  The history of the separation of space technology from non-space technology 

should be accomplished.  We’ve developed space systems long before JCIDS and 

traditional acquisitions were developed.  Perhaps the same reasoning that was used to 

treat Space acquisition differently from non-Space acquisition can be replicated to bolster 

the argument for the additional separation of IT acquisition from non-IT acquisition.  The 

review should include applicable portions from the National Security Space (NSS) 

Acquisition Policy 03.01, the DOD Instruction 5000.1 and 5000.2, AFPD 63-1 

Capabilities-Based Acquisition System, and any currently effective memoranda. 
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Reassess required Key-Performance Parameters (KPP) for IT 

Every acquisition program must include the net-ready KPP, which ensures 

compliance with the net-centric operations and warfare model, compliance with Global 

Information Grid (GIG) profiles, Information Assurance (IA) security requirements, and 

Integrated Architecture (IA) concepts [5].  Future research should reassess and revise 

these requirements.  In general the net-ready KPP has been positive, but we need to 

modernize it a bit.  Net-centric capability is good, while net-centric over-dependence is 

not. 

My experience is that IA security has always been an afterthought.  Upfront and 

continuous security focus prior to JITC certification helps.  There is still a need to 

improve the timeliness of JITC certification.   If programs ‘think security’ from the 

beginning they will be much better off.  Investigate ways to improve security focus, 

balanced with accessibility.  Security requirements should include the ability to log or 

analyze appropriate information such that data manipulation (malicious or accidental) can 

be detected.  We may not always prevent a security breach, but we must have enough 

data for forensics analysis to determine what happened. 

Accessibility always competes with security.  In the past we’ve often built 

security with the mindset of a fence between inner and outer domains.  We must become 

more layered than this, and consider a sort of ‘Plan B’ KPP.  In my mind, a ‘Plan B’ KPP 

provides a failsafe capability for when the power goes out, the network goes down, or 

parts of the system have been hacked or corrupted.  All systems should have the ability to 

print to hard copy, capture screen shots, or similarly store data with some type of robust 
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portable means.  The intent is to not only foster the failsafe capability, but to enable a 

‘bug-out’ situation to a new location for continued operations under duress. 

Lastly, Human Factors have long been highly considered in the development of 

fighter cockpits, with concepts such as the Heads-Up-Display (HUD) and HOTAS 

(Hands On Throttle And Stick).  There has been a tendency to disregard human factors 

when it comes to IT software development — or it is too a low priority.  Instead, we must 

treat computers like a fighter cockpit, monitors and displays like a HUD, and keyboards 

and mice like HOTAS.  We should adopt a standardized description for software 

interface controls, (i.e. we should not have to explicitly request that the mouse-wheel 

functions for scrolling a text display!).  Look to Apple Computer, Microsoft, Google, et 

al, for inspiration in this regard — they provide both good and bad examples of human 

factors integration.  Perhaps we can hire them for training and project management?!?! 

Determine acquisition categories based on risk and complexity, not cost estimates 

Acquisition categories are primarily based on the costs estimates, rather than risk 

or complexity of the program.  Of course, the JROC may always designate a program as 

“Joint Special Interest”, based on any criteria they may choose.  However, an area for 

further research should investigate the use of a non-budget-centric method for 

categorizing our programs.  This is especially so, given Google’s experiences with agile 

— using complexity estimates rather than cost or time estimates. 

Similar to the desire for event-based criteria instead of time-based criteria for 

development strategy, we should have complexity-based criteria instead of cost-based 

criteria for determining acquisition category.  A risk analysis process can determine this 
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categorization (which should still consider cost).  The aim is to prevent shortcuts and 

increased risk in an attempt to avoid a Nunn-McCurdy breach (when cost overruns 

exceed 15%).  Instead, the aim should be to reduce risk and avoid an escalation in risk-

category.  A fast-paced program that becomes high-risk can be slowed down, if 

necessary, without undue concern or focus on the budget impact.  More people can be 

dedicated to help with the workload of the high-complexity areas. 

The fact that our budget process discourages changes across fiscal years must be 

addressed in order to provide the flexibility for this system to work.  Pilots learning to fly 

in poor weather learn to focus on control instruments, such as the artificial horizon 

indicator, rather than performance instruments like the altimeter or heading indicator. 

Budget measurements like performance instruments lag too much to be use for proactive 

control over the system.  We must forge a different way to do our budgets and categories. 
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Appendix A:  Fundamental Concepts 

Moore’s Law 

In 1965, Gordon E. Moore, then director of Fairchild Camera and Instrument 

Corporation, Semiconductor Division’s Research and Development Laboratories, wrote 

an article in Electronics magazine titled “Cramming more components onto integrated 

circuits.”   In this article, he declared that the integrated circuit is “the future of electronic 

itself” and successfully predicted that integrated circuits would lead to such controversial 

wonders as “home computers — or at least terminals connected to a central computer — 

automatic controls for automobiles, and personal portable communication equipment.” 

Among other discussions of reliability and increased use of integrated electronics 

within industry, Moore presented a graph not unlike the one pictured below, in Figure 15, 

taken from Moore’s original notes.  This image is reprinted and captioned according to 

the Intel Corporation requirements. [30] 

 

Figure 15 - Moore’s Law Original Graph 

In 1965, Gordon Moore sketched out his prediction of the pace of silicon technology. Decades later, 
Moore’s Law remains true, driven largely by Intel’s unparalleled silicon expertise. 

Copyright © 2005 Intel Corporation.  Used with Permission. [31] 
http://download.intel.com/museum/Moores_Law/Images_Assets/Image_Usage_Guide_Readme.pdf 
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If a line is drawn between the troughs of subsequent years, there is a linear 

relationship between time and the number of transistors.  This relationship is better 

illustrated in the following Figure 16.  The line of best fit approximates the number of 

transistors doubling every two years.  

 

Figure 16 - Moore's Law Linear Relationship [32] 
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Rock’s Law 

 

According to Philip E. Ross, in his article “5 Commandments:  The rules 

engineers live by weren’t always set in stone”, Rock’s Law was first attributed to venture 

capitalist Arthur Rock by Gordon Moore.  Philip writes that the law is “…sometimes 

called Moore’s Second Law, because Moore first spoke of it publicly in the mid-1990s, 

we are calling it Rock’s Law because Moore himself attributes it to Arthur Rock, an early 

investor in Intel, who noted that the cost of semiconductor tools doubles every four 

years.” [33] 

Rock’s Law is considered by many to be the economic opposite to Moore’s Law, 

in that Moore’s law is limited only by the expansion of technology while Rock’s Law is 

the counter force limited by economic reality.  Eventually, the inability to cheaply 

fabricate circuitry becomes the dominant limiting factor.  Although many contest that 

Rock’s Law is not holding true, and our efforts should instead focus on the fabrication 

cost per transistor (not the fabrication tools), the Law is still useful in the broad sense.  

Rock’s Law may need revision before it is to be used for accurate and precise predictions 

of the future, but it will probably always be correct in that economics will tend to counter 

and regulate any exponential technology growth. 
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Joint Capabilities Integration & Development System (JCIDS) 

 
The JCIDS process is a highly refined and thorough framework for the DoD 

acquisitions process.  Despite any shortcomings with respect to IT software development, 

JCIDS and traditional acquisitions are a positive culmination of years of previous 

acquisition reform efforts.  I believe the best way to learn the nuances and details of 

JCIDS is to simply dive right in and review the Defense Acquisition University’s (DAU) 

website on JCIDS:  https://acc.dau.mil/CommunityBrowser.aspx?id=28947.  Also search 

for the Defense Acquisition Guidebook for more information [5], and CJCSI 3170.01G 

(or the most current reference), which outlines JCIDS policy. 

The DAU site has several training courses, documents, and briefings.  There is 

even an interactive Integrated Framework Chart:  https://acc.dau.mil/ifc/.  You may click 

on links within the chart to zoom in on detailed descriptions, with links to even more 

information.  Figure 17 shows the overview of the entire chart, where you can notice the 

“V”-shaped patterns characteristic of systems engineering processes.  Figure 18 and 

Figure 19 both show a bit more detail on how JCIDS fits into the overall Defense 

Acquisition System. 

The challenge, as you study the acquisitions process, is to envision it within the 

larger OODA loop of the USA, DoD, and military services.  We must not allow the 

control-performance lag introduced by JCIDS and the Defense Acquisitions System to 

dominate our operations.  Yet, we cannot just skip steps without consequence, so we 

must be prudent in our continued reform of JCIDS and the Defense Acquisitions System. 
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Figure 17 - JCIDS & Defense Acquisition System Integrated Framework Chart [5] 
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Figure 18 - DoD Architecture, Requirements & Acquisition Process [34] 

 

 

Figure 19 – JCIDS and the Defense Acquisition System [34] 
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Colonel John R. Boyd 

 
The late Colonel John R. Boyd was a USAF fighter pilot that developed the 

energy-maneuverability theory for aerial combat that is still the core philosophy for 

fighter combat training today.  Colonel Boyd was soon recognized as a strategic visionary 

and went to the Pentagon where he continued with a reputation as a shrewd and 

confrontational maverick, resurrecting the F-X project which became the F-15.  He 

followed this effort with the light-weight fighter program that led to the F-16 and F-18 

fighter jets.  Colonel Boyd was discouraged by the Pentagon’s emphasis on machines 

over people and ideas, with our best warriors and commanders leaving in unprecedented 

numbers.  “People, ideas, hardware – in that order”, Boyd would often shout. [1] Colonel 

Boyd’s advice was relied upon and credited for helping form the winning strategies used 

in Operation Desert Storm. 

Perhaps most famously, Colonel Boyd is known for the OODA loop (see 

Figure 20), used by military and business organizations alike, to provide a framework for 

analyzing the various parts of the organization’s performance.  It is important to note the 

OODA loop is much more faceted than a single simple loop — there are multiple 

feedback loops within the larger OODA loop, feed-forward loops, and decision points.  

Operating the OODA loop faster than the enemy’s OODA loop yields and advantage, but 

‘faster’ never meant skipping any of the steps: 

• When you’re doing OODA “loops” right, accuracy and speed improve together; 

they don’t trade off. 

• A primary function of management is to build an organization that gets better and 

better at these things. 
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Figure 20 - The One and Only OODA Loop [35] 

I think the best source for further information is the Defense and the National 

Interest online web site, http://www.d-n-i.net/dni/john-r-boyd/ [35].  This site contains 

many of Boyd’s unfinished works, including “A Discourse on Winning and Losing”, 

which contains “Patterns of Conflict”, “Strategic Game of ? and ?”, and “Organic Design 

for Command and Control”. 

There are also several books which discuss Colonel Boyd, such as “Boyd: The 

Fighter Pilot Who Changed the Art of War”, by Robert Coram, and another one of my 

favorites “The Pentagon Wars:  Reformers Challenge the Old Guard”, by James G. 

Burton.  Both are essential reading for acquisition mavericks out there in the world [36]. 
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Law of Competing Motives 

 
Throughout my experiences managing programs through the acquisitions process 

I observed that, although acquisitions efforts were supposed to be primarily requirements 

driven, they tended to ebb and flow between competing motivations.  Depending on the 

focus of any particular meeting or working group, the meeting’s priorities and 

conclusions tended to favor one motive at the exclusion of others.  I tried to postulate and 

extract what exactly should always be our primary motivation — the main thing we 

should try to make most efficient and most effective. 

Given my operational flying background, I initially advocated that the mission 

should be the dominant motive, since it seemed that we derive the other motives from the 

mission or task to be accomplished.  After all, we shouldn’t be creating missions to 

justify the need for more people — it is the other way around, thus we have people only 

because we need them to perform tasks and missions. 

Realizing my own operational bias, I considered other perspectives and concluded 

that none of the motivations should be dominant.  Furthermore, I observed that the more 

out of balance a particular acquisition program’s competing motives were, the more 

unstable, costly, unpredictable, and uncontrollable the program became — regardless of 

what the deviant motive was. 

Thus, I developed the Law of Competing Motives (see Figure 21) as follows: 

1) Proper leadership is the influence which brings the competing motives into 

balance — that is, toward the center of the color wheel.  The correct 

leadership for a given situation isn’t always the center of the color circle, but 

it isn’t at the edge either.  The correct leadership depends on assessing which 

motive or motives are relatively over-dominant or under-dominant and 
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counter-adjusting resources and priorities accordingly, (i.e. one ‘unit’ of 

leftward deviation needs one ‘unit’ of rightward leadership correction). 

2) Stability of leadership is essential for maintaining consistent performance.  If 

the commander or director changes their emphasis too often, the performance 

will circle about the center of the color wheel in a sort of hysteresis loop eddy 

current.  This hysteresis loss represents inefficiency in the use of resources; 

the bigger the area encircled, the bigger the efficiency loss. 

3) Allowing one or more motives to remain over-dominant drives relative 

inefficiency in all other areas.  The difficulty, of course, is properly assessing 

and comparing qualitative factors with quantitative measures.  Thus 

inefficiency in one area may be an indicator of incorrect measurement or 

assessment rather than incorrect leadership or correction. 

 

 

Figure 21 - Law of Competing Motives, Example Color Wheel 

Note:  The number of competing motives can range anywhere from two to infinity.  The competing 
motives may be modeled in a circular or spherical fashion.  Determining which particular motives are 
most opposite other motives is keystone to properly modeling the process. 
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